3.109 \(\int \frac{1}{(a+b \sin ^2(c+d x))^3} \, dx\)

Optimal. Leaf size=144 \[ \frac{\left (8 a^2+8 a b+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a+b} \tan (c+d x)}{\sqrt{a}}\right )}{8 a^{5/2} d (a+b)^{5/2}}+\frac{3 b (2 a+b) \sin (c+d x) \cos (c+d x)}{8 a^2 d (a+b)^2 \left (a+b \sin ^2(c+d x)\right )}+\frac{b \sin (c+d x) \cos (c+d x)}{4 a d (a+b) \left (a+b \sin ^2(c+d x)\right )^2} \]

[Out]

((8*a^2 + 8*a*b + 3*b^2)*ArcTan[(Sqrt[a + b]*Tan[c + d*x])/Sqrt[a]])/(8*a^(5/2)*(a + b)^(5/2)*d) + (b*Cos[c +
d*x]*Sin[c + d*x])/(4*a*(a + b)*d*(a + b*Sin[c + d*x]^2)^2) + (3*b*(2*a + b)*Cos[c + d*x]*Sin[c + d*x])/(8*a^2
*(a + b)^2*d*(a + b*Sin[c + d*x]^2))

________________________________________________________________________________________

Rubi [A]  time = 0.146423, antiderivative size = 144, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.357, Rules used = {3184, 3173, 12, 3181, 205} \[ \frac{\left (8 a^2+8 a b+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a+b} \tan (c+d x)}{\sqrt{a}}\right )}{8 a^{5/2} d (a+b)^{5/2}}+\frac{3 b (2 a+b) \sin (c+d x) \cos (c+d x)}{8 a^2 d (a+b)^2 \left (a+b \sin ^2(c+d x)\right )}+\frac{b \sin (c+d x) \cos (c+d x)}{4 a d (a+b) \left (a+b \sin ^2(c+d x)\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sin[c + d*x]^2)^(-3),x]

[Out]

((8*a^2 + 8*a*b + 3*b^2)*ArcTan[(Sqrt[a + b]*Tan[c + d*x])/Sqrt[a]])/(8*a^(5/2)*(a + b)^(5/2)*d) + (b*Cos[c +
d*x]*Sin[c + d*x])/(4*a*(a + b)*d*(a + b*Sin[c + d*x]^2)^2) + (3*b*(2*a + b)*Cos[c + d*x]*Sin[c + d*x])/(8*a^2
*(a + b)^2*d*(a + b*Sin[c + d*x]^2))

Rule 3184

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> -Simp[(b*Cos[e + f*x]*Sin[e + f*x]*(a + b*Sin[
e + f*x]^2)^(p + 1))/(2*a*f*(p + 1)*(a + b)), x] + Dist[1/(2*a*(p + 1)*(a + b)), Int[(a + b*Sin[e + f*x]^2)^(p
 + 1)*Simp[2*a*(p + 1) + b*(2*p + 3) - 2*b*(p + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f}, x] && NeQ
[a + b, 0] && LtQ[p, -1]

Rule 3173

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Sim
p[((A*b - a*B)*Cos[e + f*x]*Sin[e + f*x]*(a + b*Sin[e + f*x]^2)^(p + 1))/(2*a*f*(a + b)*(p + 1)), x] - Dist[1/
(2*a*(a + b)*(p + 1)), Int[(a + b*Sin[e + f*x]^2)^(p + 1)*Simp[a*B - A*(2*a*(p + 1) + b*(2*p + 3)) + 2*(A*b -
a*B)*(p + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && LtQ[p, -1] && NeQ[a + b, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3181

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(-1), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist
[ff/f, Subst[Int[1/(a + (a + b)*ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b \sin ^2(c+d x)\right )^3} \, dx &=\frac{b \cos (c+d x) \sin (c+d x)}{4 a (a+b) d \left (a+b \sin ^2(c+d x)\right )^2}-\frac{\int \frac{-4 a-3 b+2 b \sin ^2(c+d x)}{\left (a+b \sin ^2(c+d x)\right )^2} \, dx}{4 a (a+b)}\\ &=\frac{b \cos (c+d x) \sin (c+d x)}{4 a (a+b) d \left (a+b \sin ^2(c+d x)\right )^2}+\frac{3 b (2 a+b) \cos (c+d x) \sin (c+d x)}{8 a^2 (a+b)^2 d \left (a+b \sin ^2(c+d x)\right )}-\frac{\int \frac{-8 a^2-8 a b-3 b^2}{a+b \sin ^2(c+d x)} \, dx}{8 a^2 (a+b)^2}\\ &=\frac{b \cos (c+d x) \sin (c+d x)}{4 a (a+b) d \left (a+b \sin ^2(c+d x)\right )^2}+\frac{3 b (2 a+b) \cos (c+d x) \sin (c+d x)}{8 a^2 (a+b)^2 d \left (a+b \sin ^2(c+d x)\right )}+\frac{\left (8 a^2+8 a b+3 b^2\right ) \int \frac{1}{a+b \sin ^2(c+d x)} \, dx}{8 a^2 (a+b)^2}\\ &=\frac{b \cos (c+d x) \sin (c+d x)}{4 a (a+b) d \left (a+b \sin ^2(c+d x)\right )^2}+\frac{3 b (2 a+b) \cos (c+d x) \sin (c+d x)}{8 a^2 (a+b)^2 d \left (a+b \sin ^2(c+d x)\right )}+\frac{\left (8 a^2+8 a b+3 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+(a+b) x^2} \, dx,x,\tan (c+d x)\right )}{8 a^2 (a+b)^2 d}\\ &=\frac{\left (8 a^2+8 a b+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a+b} \tan (c+d x)}{\sqrt{a}}\right )}{8 a^{5/2} (a+b)^{5/2} d}+\frac{b \cos (c+d x) \sin (c+d x)}{4 a (a+b) d \left (a+b \sin ^2(c+d x)\right )^2}+\frac{3 b (2 a+b) \cos (c+d x) \sin (c+d x)}{8 a^2 (a+b)^2 d \left (a+b \sin ^2(c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 1.24192, size = 125, normalized size = 0.87 \[ \frac{\frac{\left (8 a^2+8 a b+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a+b} \tan (c+d x)}{\sqrt{a}}\right )}{(a+b)^{5/2}}+\frac{\sqrt{a} b \sin (2 (c+d x)) \left (16 a^2-3 b (2 a+b) \cos (2 (c+d x))+16 a b+3 b^2\right )}{(a+b)^2 (2 a-b \cos (2 (c+d x))+b)^2}}{8 a^{5/2} d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sin[c + d*x]^2)^(-3),x]

[Out]

(((8*a^2 + 8*a*b + 3*b^2)*ArcTan[(Sqrt[a + b]*Tan[c + d*x])/Sqrt[a]])/(a + b)^(5/2) + (Sqrt[a]*b*(16*a^2 + 16*
a*b + 3*b^2 - 3*b*(2*a + b)*Cos[2*(c + d*x)])*Sin[2*(c + d*x)])/((a + b)^2*(2*a + b - b*Cos[2*(c + d*x)])^2))/
(8*a^(5/2)*d)

________________________________________________________________________________________

Maple [B]  time = 0.093, size = 334, normalized size = 2.3 \begin{align*}{\frac{ \left ( \tan \left ( dx+c \right ) \right ) ^{3}b}{d \left ( a \left ( \tan \left ( dx+c \right ) \right ) ^{2}+ \left ( \tan \left ( dx+c \right ) \right ) ^{2}b+a \right ) ^{2}a \left ( a+b \right ) }}+{\frac{3\,{b}^{2} \left ( \tan \left ( dx+c \right ) \right ) ^{3}}{8\,d \left ( a \left ( \tan \left ( dx+c \right ) \right ) ^{2}+ \left ( \tan \left ( dx+c \right ) \right ) ^{2}b+a \right ) ^{2}{a}^{2} \left ( a+b \right ) }}+{\frac{\tan \left ( dx+c \right ) b}{d \left ( a \left ( \tan \left ( dx+c \right ) \right ) ^{2}+ \left ( \tan \left ( dx+c \right ) \right ) ^{2}b+a \right ) ^{2} \left ({a}^{2}+2\,ab+{b}^{2} \right ) }}+{\frac{5\,{b}^{2}\tan \left ( dx+c \right ) }{8\,d \left ( a \left ( \tan \left ( dx+c \right ) \right ) ^{2}+ \left ( \tan \left ( dx+c \right ) \right ) ^{2}b+a \right ) ^{2}a \left ({a}^{2}+2\,ab+{b}^{2} \right ) }}+{\frac{1}{d \left ({a}^{2}+2\,ab+{b}^{2} \right ) }\arctan \left ({ \left ( a+b \right ) \tan \left ( dx+c \right ){\frac{1}{\sqrt{a \left ( a+b \right ) }}}} \right ){\frac{1}{\sqrt{a \left ( a+b \right ) }}}}+{\frac{b}{d \left ({a}^{2}+2\,ab+{b}^{2} \right ) a}\arctan \left ({ \left ( a+b \right ) \tan \left ( dx+c \right ){\frac{1}{\sqrt{a \left ( a+b \right ) }}}} \right ){\frac{1}{\sqrt{a \left ( a+b \right ) }}}}+{\frac{3\,{b}^{2}}{8\,{a}^{2}d \left ({a}^{2}+2\,ab+{b}^{2} \right ) }\arctan \left ({ \left ( a+b \right ) \tan \left ( dx+c \right ){\frac{1}{\sqrt{a \left ( a+b \right ) }}}} \right ){\frac{1}{\sqrt{a \left ( a+b \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+sin(d*x+c)^2*b)^3,x)

[Out]

1/d/(a*tan(d*x+c)^2+tan(d*x+c)^2*b+a)^2/a/(a+b)*tan(d*x+c)^3*b+3/8/d/(a*tan(d*x+c)^2+tan(d*x+c)^2*b+a)^2/a^2*b
^2/(a+b)*tan(d*x+c)^3+1/d/(a*tan(d*x+c)^2+tan(d*x+c)^2*b+a)^2/(a^2+2*a*b+b^2)*tan(d*x+c)*b+5/8/d/(a*tan(d*x+c)
^2+tan(d*x+c)^2*b+a)^2*b^2/a/(a^2+2*a*b+b^2)*tan(d*x+c)+1/d/(a^2+2*a*b+b^2)/(a*(a+b))^(1/2)*arctan((a+b)*tan(d
*x+c)/(a*(a+b))^(1/2))+1/d/(a^2+2*a*b+b^2)/a/(a*(a+b))^(1/2)*arctan((a+b)*tan(d*x+c)/(a*(a+b))^(1/2))*b+3/8/d/
a^2/(a^2+2*a*b+b^2)/(a*(a+b))^(1/2)*arctan((a+b)*tan(d*x+c)/(a*(a+b))^(1/2))*b^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c)^2)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.3178, size = 1883, normalized size = 13.08 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c)^2)^3,x, algorithm="fricas")

[Out]

[-1/32*(((8*a^2*b^2 + 8*a*b^3 + 3*b^4)*cos(d*x + c)^4 + 8*a^4 + 24*a^3*b + 27*a^2*b^2 + 14*a*b^3 + 3*b^4 - 2*(
8*a^3*b + 16*a^2*b^2 + 11*a*b^3 + 3*b^4)*cos(d*x + c)^2)*sqrt(-a^2 - a*b)*log(((8*a^2 + 8*a*b + b^2)*cos(d*x +
 c)^4 - 2*(4*a^2 + 5*a*b + b^2)*cos(d*x + c)^2 + 4*((2*a + b)*cos(d*x + c)^3 - (a + b)*cos(d*x + c))*sqrt(-a^2
 - a*b)*sin(d*x + c) + a^2 + 2*a*b + b^2)/(b^2*cos(d*x + c)^4 - 2*(a*b + b^2)*cos(d*x + c)^2 + a^2 + 2*a*b + b
^2)) + 4*(3*(2*a^3*b^2 + 3*a^2*b^3 + a*b^4)*cos(d*x + c)^3 - (8*a^4*b + 19*a^3*b^2 + 14*a^2*b^3 + 3*a*b^4)*cos
(d*x + c))*sin(d*x + c))/((a^6*b^2 + 3*a^5*b^3 + 3*a^4*b^4 + a^3*b^5)*d*cos(d*x + c)^4 - 2*(a^7*b + 4*a^6*b^2
+ 6*a^5*b^3 + 4*a^4*b^4 + a^3*b^5)*d*cos(d*x + c)^2 + (a^8 + 5*a^7*b + 10*a^6*b^2 + 10*a^5*b^3 + 5*a^4*b^4 + a
^3*b^5)*d), -1/16*(((8*a^2*b^2 + 8*a*b^3 + 3*b^4)*cos(d*x + c)^4 + 8*a^4 + 24*a^3*b + 27*a^2*b^2 + 14*a*b^3 +
3*b^4 - 2*(8*a^3*b + 16*a^2*b^2 + 11*a*b^3 + 3*b^4)*cos(d*x + c)^2)*sqrt(a^2 + a*b)*arctan(1/2*((2*a + b)*cos(
d*x + c)^2 - a - b)/(sqrt(a^2 + a*b)*cos(d*x + c)*sin(d*x + c))) + 2*(3*(2*a^3*b^2 + 3*a^2*b^3 + a*b^4)*cos(d*
x + c)^3 - (8*a^4*b + 19*a^3*b^2 + 14*a^2*b^3 + 3*a*b^4)*cos(d*x + c))*sin(d*x + c))/((a^6*b^2 + 3*a^5*b^3 + 3
*a^4*b^4 + a^3*b^5)*d*cos(d*x + c)^4 - 2*(a^7*b + 4*a^6*b^2 + 6*a^5*b^3 + 4*a^4*b^4 + a^3*b^5)*d*cos(d*x + c)^
2 + (a^8 + 5*a^7*b + 10*a^6*b^2 + 10*a^5*b^3 + 5*a^4*b^4 + a^3*b^5)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c)**2)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.16285, size = 285, normalized size = 1.98 \begin{align*} \frac{\frac{{\left (\pi \left \lfloor \frac{d x + c}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a + 2 \, b\right ) + \arctan \left (\frac{a \tan \left (d x + c\right ) + b \tan \left (d x + c\right )}{\sqrt{a^{2} + a b}}\right )\right )}{\left (8 \, a^{2} + 8 \, a b + 3 \, b^{2}\right )}}{{\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} \sqrt{a^{2} + a b}} + \frac{8 \, a^{2} b \tan \left (d x + c\right )^{3} + 11 \, a b^{2} \tan \left (d x + c\right )^{3} + 3 \, b^{3} \tan \left (d x + c\right )^{3} + 8 \, a^{2} b \tan \left (d x + c\right ) + 5 \, a b^{2} \tan \left (d x + c\right )}{{\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )}{\left (a \tan \left (d x + c\right )^{2} + b \tan \left (d x + c\right )^{2} + a\right )}^{2}}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c)^2)^3,x, algorithm="giac")

[Out]

1/8*((pi*floor((d*x + c)/pi + 1/2)*sgn(2*a + 2*b) + arctan((a*tan(d*x + c) + b*tan(d*x + c))/sqrt(a^2 + a*b)))
*(8*a^2 + 8*a*b + 3*b^2)/((a^4 + 2*a^3*b + a^2*b^2)*sqrt(a^2 + a*b)) + (8*a^2*b*tan(d*x + c)^3 + 11*a*b^2*tan(
d*x + c)^3 + 3*b^3*tan(d*x + c)^3 + 8*a^2*b*tan(d*x + c) + 5*a*b^2*tan(d*x + c))/((a^4 + 2*a^3*b + a^2*b^2)*(a
*tan(d*x + c)^2 + b*tan(d*x + c)^2 + a)^2))/d